
The	Problem	with	Hadoop	
	

Hakan	Jakobsson	
hakan@hakan-jakobsson.com	

	
Version	2015-08-24	

	

Introduction	
Hadoop	has	been	one	of	the	hottest	buzzwords	in	high	tech	in	recent	years.	One	of	
the	vendors	in	the	space,	Cloudera,	has	attracted	over	$1	billion	in	venture	funding,	
but	there	are	numerous	other	players	on	the	Hadoop	bandwagon.	Hadoop	is	about	
Big	Data	and	scalability,	important	concepts	in	a	world	of	ever-increasing	data	
volumes.		
	
There	have	been	some	chinks	in	the	armor,	though.	Recently,	questions	have	been	
raised	about	whether	Hadoop	is	really	taking	over	the	world.	A	Gartner	survey	
found	investments	in	Hadoop	to	be	tentative.	
http://www.gartner.com/newsroom/id/3051717	
	
On	a	brighter	note,	when	Hortonworks	reported	its	2015	Q2	numbers,	revenue	was	
$30.7	million,	up	154	percent	from	the	same	quarter	in	2014	and	beating	analysts’	
expectations.	On	the	other	hand,	the	operating	loss	on	that	revenue	was	$42.1	
million	compared	to	a	$23.4	million	loss	a	year	earlier.	Critics	have	also	questioned	
whether	Hortonworks	open-source	approach	can	be	profitable.	Its	two	major	
competitors,	Cloudera	and	MapR,	have	substantial	proprietary	components	in	their	
portfolios	of	offerings.	
	
So	an	obvious	question	is	what	will	determine	the	ultimate	success	of	Hadoop.	What	
are	the	obstacles	on	the	road	to	becoming	a	widely	used	mainstream	technology	
that	could	limit	it	to	a	niche?	First,	one	might	want	to	ponder	the	question:	
“What	exactly	is	Hadoop?”	

What	is	Hadoop?	
Hadoop	is	an	ecosystem	of	technologies	that	provide	a	framework	for	large-scale	
computing.	There	are	so	many	of	them	that	trying	to	generate	a	complete	picture	
would	be	a	challenge,	but	some	components	are	more	“core”	than	others.	But	the	
question	of	what	Hadoop	is	may	not	have	a	completely	trivial	answer.	
http://blog.cask.co/2015/07/what-is-hadoop-anyway/	
	
	

Right	there,	we	have	stumbled	on	a	problem:	Fragmentation.	Some	of	the	many	
components	of	the	Hadoop	ecosystem	have	overlaps	in	functionality.	Often,	such	
overlaps	are	the	result	of	the	original	technology	having	some	deficiencies	and	of	
newer	technologies	that	came	about	to	address	those	problem.	So	now	you	have	
entrenched	technologies	battling	it	out	with	newer	ones	that	may	be	better	in	some	
circumstances	making	technology	choices	within	the	Hadoop	ecosystem	less	
straightforward	affairs.		
	
But	let’s	look	at	what	originally	made	Hadoop	so	attractive.	Among	the	very	core	
components	are	HDFS,	a	distributed	file	system,	and	MapReduce,	a	programming	
model	for	distributed	computing	on	large	clusters.	These	are	very	key	components	if	
you	want	to	run	massive	computational	tasks	on	very	large	clusters	built	from	
inexpensive	commodity	hardware	–	the	very	key	to	the	allure	of	Hadoop.	You	need	a	
distributed	file	system	and	you	need	to	be	able	to	program	your	computational	tasks	
to	run	on	possibly	many	thousands	of	cluster	nodes.		
	
Let’s	start	with	HDFS.	A	distributed	file	system	is	a	good	thing	to	have.	Wikipedia	
lists	about	a	dozen	just	as	examples.	HDFS	obviously	gets	the	job	done,	but	one	of	
the	major	Hadoop	distributers,	MapR,	was	sufficiently	unimpressed	with	HDFS	to	
come	up	with	its	own	proprietary	implementation	with	the	same	external	
interfaces.	But	HDFS	is	there,	it	pretty	much	works,	and	it’s	very	much	a	key	
component	in	the	Hadoop	ecosystem.	

The	limits	of	the	computing	paradigm	
So	here	is	where	the	real	problem	of	Hadoop	resides.	It’s	not	with	the	file	system;	
it’s	with	the	computing	paradigm(s).	And	there	are	a	few	that	have	emerged	as	
alternatives	to	the	original	MapReduce	framework	in	order	to	improve	upon	it	in	
certain	ways	or	complement	it	in	areas	where	MapReduce	is	unsuitable.	You	have	
Spark,	Tez,	and	Storm,	to	name	a	few,	in	addition	to	a	variety	of	storage	formats.	All	
this	is	both	good	and	bad	in	that	it	gives	users	more	options	for	a	suitable	
combination	of	technologies,	but	it	also	introduces	confusion	and	fragmentation.	
	
Hadoop,	as	a	paradigm,	assumes	that	you	want	massive	scalability	inexpensively	
and	addresses	that	need	by	providing	a	framework	for	scalable	computing	running	
on	massive	clusters	of	commodity	hardware.	That’s	great	in	theory,	but	let’s	
examine	the	limitations.	What	size	is	the	market	that	really	needs	that	much	data	
and	processing	power?	Do	you	really	need	something	akin	to	Hadoop	unless	you	are	
a	Google,	Yahoo,	or	Facebook?	Sure,	there	are	many	other	players	with	a	lot	of	data,	
but	how	big	is	that	market	opportunity	realistically	in	comparison	to	the	overall	IT	
market?	For	every	Facebook,	there	are	probably	a	fair	number	of	midsize	companies	
with	more	modest	requirements.	
	
Here	is	where	things	get	problematic	for	the	Hadoop	paradigm:	It	is	inefficient.	It	
sacrifices	efficiency	for	scalability.	The	basic	concept	is	very	simple.	There	are	
algorithms	that	are	extremely	stupid	but	scale	very	well.	Essentially,	they	are	very	

dumb	but	due	to	their	simplicity,	they	can	easily	be	parallelized	over	a	large	number	
of	cluster	nodes.	More	clever	algorithms	may	exist	but	will	eventually	run	out	of	gas	
when	being	processed	on	massively	parallel	hardware	architectures.		
	
So	where	Hadoop	shines	is	at	scaling	often	primitive	algorithms	by	brute	force.	The	
old	phrase	“throwing	hardware	at	a	problem”	comes	to	mind,	but	at	least	it’s	
relatively	inexpensive	hardware.	
	
I	went	to	some	of	the	relatively	early	Hadoop	World	conferences	in	2009	and	2010	
sponsored	by	Cloudera	and	took	some	of	the	classes	that	were	offered.	One	notable	
thing	about	the	early	classes	(other	than	that	Hadoop	was	somewhat	lagging	in	
security	technology)	was	the	preferred	way	of	implementing	things	algorithmically.	
For	the	single-source	shortest-path	problem	in	graphs,	a	massively	parallel	breadth-
first	search	was	advocated.	That’s	an	extremely	wasteful	approach,	but	it’s	an	
approach	that	is	scalable.	A	more	clever	approach	would	be	to	use	Dijkstra's	
algorithm.	However,	part	of	the	cleverness	of	that	algorithm	is	that	it	uses	a	global	
state,	something	that	is	hard	to	do	efficiently	if	you	want	to	scale	a	cluster	to	an	
arbitrary	large	number	of	nodes	in	a	distributed	architecture.		
	
The	distinction	between	scalability	and	performance	have	been	studied	by	people	
who	have	noted	that,	while	a	stupid	algorithm	may	scale	well,	running	it	on	
hundreds	of	cores	on	a	cluster	may	not	give	the	same	performance	as	a	smarter	
algorithm	running	on	a	single	core	on	your	laptop.	
http://blog.acolyer.org/2015/06/05/scalability-but-at-what-cost/	
One	would	think	that	it	defeats	the	purpose	of	running	on	scalable,	inexpensive,	
commodity	hardware	if	your	computational	framework	is	very	inefficient.	

So	the	next	obvious	question…	
Is	a	very	inefficient	way	of	computing	really	a	good	idea?	It	probably	could	be	if	your	
life	depended	on	delivering	a	result	back	really	quickly	no	matter	what	the	scale	of	
your	data	set.	But	what	if	you	are	a	CIO	that	has	to	consider	the	effectiveness	of	the	
dollars	that	you	spend	on	infrastructure?	Let’s	say	your	paradigm	for	computing	is	
both	highly	scalable	and	highly	inefficient	at	the	same	time,	and	the	scalability	is	
only	needed	for	a	small	subset	of	tasks.	Couldn’t	that	lead	to	a	very	inefficient	way	to	
spend	you	IT	dollars,	especially	if	the	computing	paradigm	is	somewhat	nonintuitive	
and	with	a	limited	skill	pool?	
	
So	to	what	extent	do	you	really	need	all	that	scalability?	A	Cloudera	survey	from	
2012	studied	the	properties	of	the	workloads	of	a	few	Cloudera	customers.	
http://blog.cloudera.com/blog/2012/09/what-do-real-life-hadoop-workloads-
look-like/	
It	found	that	the	participating	customers	moved	27	PB	of	data	over	73,836	jobs.	
Data	“moved”	includes	the	total	of	input,	output,	and	shuffle	sizes.	How	much	is	that	
on	average	per	job?	It	comes	to	366	GB	–	less	than	the	size	of	the	SSD	drive	of	the	
laptop	that	I	bought	the	same	month	the	survey	was	published.	And	it	stands	to	

reason	that	even	if	a	company	has	accumulated	vast	amounts	of	data,	not	all	
computational	tasks	will	involve	all	of	it.	More	likely,	like	in	the	Cloudera	survey,	the	
average	tasks	will	only	involve	a	fairly	pedestrian	amount.	
	
So	then,	how	do	you	justify	using	a	computationally	inefficient	framework	when	
your	typical	task	doesn’t	require	all	the	scalability	that	the	framework	is	all	about?	
This	is	a	key	question.	You	could	try	to	justify	it	by	claiming	that	all	data	should	go	
into	one	gigantic	cluster	in	its	raw	format,	a	“data	lake”	serving	vast	numbers	of	
users	and	accessible	to	different	kinds	of	processing	within	the	Hadoop	ecosystem.	

The	data	lake	
So	what	is	wrong	with	the	concept	of	a	data	lake	other	than	that	Gartner	will	tell	
CIOs	that	it’s	a	bad	idea?	
http://www.gartner.com/newsroom/id/2809117	
	
Putting	a	vast	amount	of	raw	data	in	a	huge	cluster	doesn’t	add	a	whole	lot	of	value	
by	itself.	What	about	security?	Hadoop	is	hardly	the	poster	child	for	great	security	
and	the	idea	of	lumping	all	your	corporate	data	into	one	big	pool	is	something	that	
should	make	any	CIO	think	twice.		
	
Security	comes	at	many	levels	in	an	IT	infrastructure.	For	instance,	relational	
database	products	have	pretty	well	established	security	models,	but	those	policies	
work	based	on	the	data	being	interpreted	as	rows	and	columns	of	tables.	That	
interpretation	doesn’t	exist	in	the	raw	data	–	you	need	the	database	for	that.	An	HR	
application	may	implement	various	security	related	features.	What’s	the	process	for	
changing	someone’s	salary?	A	manager	can	presumably	see	the	salaries	of	his	
reports,	but	are	their	social	security	numbers	visible	to	him?	There	is	no	logic	for	
policies	like	that	in	the	raw	data,	only	in	the	HR	application.	So	if	we	have	a	large	
Hadoop	cluster	with	massive	quantities	of	raw	data,	what	part	of	it	can	be	accessed	
by	whom?	As	far	as	I	know,	there	are	currently	no	HR	applications	in	the	Hadoop	
ecosystem	and	why	would	you	need	a	gigantic	cluster	for	your	HR	processing?		
	
Even	worse,	the	idea	of	having	multiple	types	of	Hadoop	processing	access	the	same	
data	doesn’t	go	very	well	with	security.	What	is	the	point	of	carefully	defining	what	
database	columns	a	Hive	user	can	access	if	the	same	user	can	see	the	entire	
underlying	HDFS	files	when	running	MapReduce	jobs?	Security	models	that	are	
based	on	a	certain	interpretation	of	the	data,	e.g.,	as	rows	and	columns	in	a	database	
table,	aren’t	easily	sharable	with	processing	models	that	view	the	data	according	to	
some	other	paradigm.	The	data	lake	is	supposed	to	support	storing	the	data	in	its	
original	format,	which	could	be	XML,	JSON,	CSV	files,	any	number	of	proprietary	
formats,	etc.	Imagine	all	the	patient	data	of	a	hospital	being	stored	in	its	raw	format	
in	a	data	lake	and	available	for	any	type	of	analysis.	How	do	you	protect	patient	
privacy	in	an	intelligent	way?	The	risk	is	that	the	system	has	to	be	locked	down	in	
such	a	coarse	and	draconian	way	that	meaningful	analysis	of	the	data	becomes	
impossible	and	the	data	lake	becomes	a	data	graveyard.	Still,	that	might	be	

preferable	to	an	Ashley-Madison-caliber	security	breach,	something	that	the	data	
lake	concept	seems	to	be	inviting.	
	
There	is	some	logic	to	how	the	data	lake	concept	gained	traction	among	Hadoop	
proponents	in	addition	to	being	an	excuse	for	the	need	of	gigantic	clusters.	ETL	was	
an	early	success	story	for	Hadoop.	ETL	often	has	very	strict	SLAs	in	scenarios	where	
data	from	operational	systems	has	to	be	cleaned,	transformed,	and	consolidated	for	
analysis	within	some	tight	time	windows.	Hence,	there	is	a	real	need	to	be	able	to	
provide	a	massive	amount	of	computing	power	for	what	may	only	be	a	few	hours	
each	day.	Traditional	ELT	solutions	have	been	costly	so	it’s	easy	to	see	the	draw	of	a	
scalable,	open-source	framework	running	on	inexpensive	hardware.	So	if	the	use	of	
the	Hadoop	cluster	is	restricted	to	very	specific	ETL	processes	where	the	security	
and	consistency	of	the	data,	from	an	end-user	perspective,	is	completely	controlled	
by	the	database	systems	where	the	data	is	landed,	Hadoop	seems	viable.	The	general	
idea	of	using	a	Hadoop	cluster	as	a	temporary	repository	for	storing	and	processing	
operational	data	for	restricted	purposes	and	with	restricted	access	makes	sense.	
	
However,	using	the	Hadoop	cluster	as	a	more	general	backend	for	processing	of	all	
your	corporate	data	is	a	different	ballgame.	But	it’s	a	natural	direction	if	you	want	to	
justify	the	need	for	large	Hadoop	clusters.	The	problem	is	that	any	step	towards	
centralizing	data	processing	brings	with	it	certain	flavors	of	a	Soviet-style	planned	
economy	with	five-year	plans.	Ironically,	you	would	generate	the	exact	same	issues	
that	have	lead	people	to	bypass	the	bureaucracy	of	traditional	IT	to	create	“shadow	
IT”	as	a	way	of	getting	things	done	more	swiftly.	One	would	think	that	there	is	some	
kind	of	irony	in	that	many	early	adopters	of	Hadoop	probably	would	be	in	the	camp	
that	would	eagerly	bypass	central	IT	only	to	find	themselves	involved	with	a	
technology	where	supporting	centralization	is	a	major	priority.	

YARN	
So	if	you	need	to	support	a	large	number	of	computing	tasks	going	against	a	large	
infrastructure	for	computation,	you	need	to	figure	out	how	to	assign	the	computing	
resources.	Usually,	the	demand	for	computing	resources	will	exceed	the	supply	and	
any	attempt	to	increase	the	supply	will	often	result	in	creative	users	finding	ways	to	
generate	additional	demand	as	previously	impractical	tasks	become	more	feasible.	
Hence,	the	need	for	pricing	mechanisms	such	as	chargebacks	to	balance	supply	and	
demand	and	make	a	particular	organization	pay	for	its	share	of	some	common	
resource	it	has	been	using.		
	
There	have	been	different	ways	of	allocating	computing	resources.	Often,	
decentralized	approaches	evolved	as	departments	realized	they	had	a	specific	need	
and	got	individual	resources	based	on	that	need.	In	data	warehousing,	for	instance,	
the	data	was	typically	based	on	operational	systems	that	may	or	may	not	have	been	
capable	of	doing	analytical	queries.	But	even	if	the	operational	systems	had	the	
capability	of	supporting	analytical	queries,	the	impact	on	the	performance	of	the	
operational	system	could	be	disruptive.	Better	just	offload	the	data	to	a	separate	

system	optimized	for	analytical	workloads	and	have	the	organizations	using	them	
pay	for	the	hardware	and	software.	And	here,	ETL	became	a	crucial	component.	
	
In	a	more	centralized	approach,	you	run	into	problems	that	go	way	beyond	who	is	
going	to	pay	for	the	storage	and	processing	of	the	data.	How	are	you	going	to	
allocate	finite	resources	between	tasks	with	different	requirements	when	it	comes	
to	throughput,	response	time,	latency,	etc.,	tasks	that	may	emanate	from	different	
organizations	where	tasks	may	have	different	priorities	even	when	generated	by	the	
same	user?		In	a	decentralized	approach,	the	individual	organizations	using	the	data	
would	figure	out	how	to	deal	with	their	processing	needs	provided	that	you	could	
supply	them	with	the	underlying	data.	In	a	centralized	environment,	you	need	a	
sophisticated	apparatus.	
	
2015	marks	the	20th	anniversary	of	the	first	version	of	the	functional	specification	of	
Oracle’s	Resource	Management	feature.	It	was	meant	to	provide	a	mechanism	for	
managing	the	resources	of	a	relational	database	system,	which	is	a	significantly	
more	restricted	environment	than	a	whole	computational	framework	like	Hadoop.	
While	the	first	version	of	Oracle’s	feature	was	released	a	few	years	later,	as	far	as	I	
know,	20	years	later,	there	is	still	a	group	at	Oracle	working	hard	to	perfect	it.	YARN	
is	the	major	Hadoop	resource	management	project.	
	
So	what	makes	resource	management	such	a	complicated	proposition?	First	of	all,	
what	resources	are	we	supposed	to	manage?	CPU?	Memory?	Disk	I/O?	Network?	
Disk	space?	Others?	If	we	are	going	to	have	individual	policies	for	different	types	of	
resources	that	may	very	well	interact,	we	have	a	bit	of	complexity	right	there.	You	
might	start	out	using	CPU	as	a	convenient	proxy	for	resources	only	to	find	that	some	
customers	want	to	be	able	to	manage	memory	or	disk	I/O	as	well,	and	access	to	
external	networks	comes	with	its	own	set	of	issues.	Moreover,	there	are	ways	to	
globally	optimize	the	distribution	of	memory	between	concurrent	operations	in	
order	to	minimize	the	risk	that	an	operation,	like	a	sort,	may	need	to	spill	
intermediate	results	to	disk.	A	manually	set	memory	management	policy	could	well	
be	highly	suboptimal	from	the	standpoint	of	global	throughput.	
	
Once	you	have	figured	out	the	resources	you	want	to	manage,	you	need	to	figure	out	
the	mechanism	for	how	to	allocate	them.	That	involves	figuring	out	both	the	
physical	implementation,	like	how	to	make	the	CPU	devote	work	to	some	tasks	in	
accordance	to	some	policy,	as	well	as	the	abstract	mechanism	for	defining	such	
policies.	How	do	you	schedule	resources	to	avoid	starvation	issues?	Do	you	schedule	
based	on	priority	or	emphasis,	i.e.,	do	you	have	a	model	where	task	A	could	have	
priority	over	task	B	for	everything	or	one	where	task	A	could	get	80	percent	of	the	
resources	and	task	B	be	guaranteed	20	percent?	How	do	you	classify	the	importance	
of	tasks?	Is	it	by	user,	groups	of	users,	or	by	type	of	task?	If	you	support	managing	
resources	both	by	organization	and	type	of	task,	how	do	you	deal	with	
organizational	hierarchies	and	task	hierarchies	and	how	do	you	reconcile	the	two	
(which	you	must	since	you	are	going	against	the	same	set	of	resources)?	Can	the	
same	user	run	different	tasks	with	different	levels	of	priority?	If	a	certain	group	of	

tasks	are	in	the	same	importance	category,	do	you	schedule	CPU	resources	between	
them	round	robin	or	do	you	prioritize	tasks	that	have	run	for	a	long	time	so	that	
they	can	complete?	Is	setting	resource	policies	the	prerogative	of	only	a	central	
authority	or	can	it	be	delegated	within	some	centrally	decided	set	of	limits?	If	so,	
what	is	the	mechanism	for	delegating	authority?	How	does	a	user	request	a	high	
priority	for	an	urgent	task	if	lacking	the	authority	to	set	it?	If	a	task	or	group	of	tasks	
is	guaranteed	a	certain	amount	of	resources	but	doesn’t	use	fully	use	them,	how	do	
you	divide	the	leftover	resources	among	other	tasks?	Do	you	address	the	
requirements	of	an	important	task	by	letting	it	run	with	an	average	priority	on	a	
larger	than	average	number	of	nodes	or	with	a	higher	than	average	priority	on	an	
average	number	of	nodes?	How	do	you	prevent	the	system	from	getting	overloaded	
and	thrashing,	e.g.,	do	you	cut	back	on	the	amount	of	resources	that	each	task	can	
use	or	do	you	have	a	queuing	mechanism	where	new	tasks	aren’t	let	in	until	there	is	
room	for	them?	If	you	have	a	queuing	mechanism,	how	do	you	define	queuing	
policies?	With	queuing,	you	definitely	need	to	address	starvation	issues	to	prevent	
lower	priority	tasks	from	getting	stuck	at	the	end	of	the	line	forever.		
	
You	can	probably	come	up	with	reasonable	use	cases	for	pretty	much	any	possible	
answer	to	the	questions	above,	so	a	resource	management	system	with	full-blown	
functionality	is	likely	to	be	somewhat	complex	to	implement.	And,	of	course,	the	
resource	management	system	needs	to	play	along	with	your	security	mechanisms,	
and	you	need	to	have	a	user	interface	for	the	whole	thing.		
	
Unfortunately,	implementing	the	resource	management	framework	is	just	part	of	
the	equation.	In	order	to	use	it	effectively,	users	have	to	understand,	not	just	the	
technical	details	of	the	feature,	but	also	all	the	ramifications	of	turning	a	certain	nob	
this	way	and	another	one	that	way.	And	then,	if	this	resource	management	
framework	is	supposed	to	be	used	for	a	massive	cluster	used	by	a	large	number	of	
organizations	generating	different	tasks	of	different	levels	of	importance,	the	people	
running	the	whole	thing	have	to	be	able	to	map	a	complex	set	of	computational	
requirements	onto	a	complex	mechanism	for	managing	resources	in	a	centralized	
fashion	(since	the	cluster	is	a	centralized	resource).	Perhaps	not	the	best	recipe	for	
agility.	

The	reality	
The	reality	is	that	the	vast,	vast	majority	of	valuable	computing	is	done	in	software	
that	was	never	developed	to	run	on	a	Hadoop	platform.	SAP	Manufacturing,	Oracle	
Financials,	Salesforce	SFA,	Microsoft	Office	–	do	they	run	on	Hadoop?	No,	and	why	
would	they	need	to?	The	more	likely	scenarios	for	Hadoop	are	where	the	
requirements	go	beyond	the	capabilities	of	traditional	infrastructure	or	where	the	
traditional	infrastructure	is	simply	overly	expensive.	The	former	case	is	a	niche	in	
comparison	with	all	of	IT	spending	and	one	where	players	will	often	create	their	
own	in-house	solutions.	The	latter	case	is	limited	as	well.	Back	during	the	height	of	
the	original	dot-com	boom,	there	were	many	startups	that	were	running	expensive	
proprietary	solutions,	like	Oracle	on	Sun	Solaris	on	expensive	SMPs.	Today,	startups	

might	be	running	MySQL	on	Linux	on	inexpensive	commodity	hardware.	The	latter	
approach	with	a	less	expensive	open-source	stack	may	be	just	fine	for	a	lot	of	
scenarios	that	don’t	need	unbounded	scalability	and	the	headaches	that	come	with	
the	type	of	programming	paradigm	needed	to	support	it.	
	
So	the	likely	prospects	for	the	success	of	Hadoop	will	be	intimately	tied	to	the	
growth	of	data	volumes	that	would	overwhelm	traditional	solutions.	A	bet	on	
Hadoop	is	essentially	a	bet	that	social	networks,	location	based	data,	the	Internet	of	
Things,	and	all	the	other	usual	“Big	Data”	suspects	will	deliver	data	volumes	that	go	
far	beyond	what	more	traditional	techniques	can	handle	and	not	just	for	some	niche	
companies	with	extreme	requirements.	Moreover,	it	assumes	that	those	data	
volumes	can’t	be	shrunk	by	inexpensive	technologies	that	will	either	filter	or	
compress	the	data	at	the	edges	reducing	the	need	for	all	of	the	large	volumes	of	
generated	data	going	into	some	central	repository.	For	an	example	of	the	last	point,	
let’s	say	that	I	wear	a	device	that	is	capable	of	detecting	and	passing	on	my	exact	
GPS	coordinates	every	10	seconds.	If	I	just	sit	on	a	park	bench	reading	a	book	for	
two	hours	without	moving	a	centimeter,	would	it	make	sense	to	store	all	those	raw	
GPS	readings	in	their	full	glory	in	a	gigantic	data	lake?	Most	likely,	other	inexpensive	
technologies	would	have	shrunk	the	amount	of	data	that	needs	to	be	propagated	to	
a	central	environment.	When	calculating	the	impact	of	the	possibility	of	large	
amount	of	future	machine-generated	data	on	the	need	for	centralized	computing	
environments,	one	needs	to	figure	out	both	the	potential	size	of	the	generated	data	
and	the	fan-in	factor	for	how	much	it	can	reasonably	and	inexpensively	be	reduced	
in	size	before	reaching	the	central	environment.		
	

A	cloud	analogy	
Recently	the	Wall	Street	Journal	published	an	article	titled	“Cloud-Computing	Kings	
Slow	to	Adapt	to	Own	Movement.”	
http://www.wsj.com/articles/cloud-computing-kingpins-slow-to-adapt-to-own-
movement-1438731775	
	
In	the	article,	it	was	pointed	out	that	companies	like	Amazon,	Google,	and	Microsoft	
weren’t	running	all	of	their	internal	systems	on	their	own	public	cloud	platforms.	
For	instance,	Amazon	doesn’t	run	all	its	operations	on	AWS.		To	quote	the	article:	
	
“The	fact	that	Amazon	still	uses	private	servers	is	“ironic,”	said	Ed	Anderson,	an	
analyst	with	Gartner,	which	advises	customers	on	both	cloud	services	and	data	center	
servers.”	
	
The	article	gives	the	impression	that	the	reason	for	cloud-service	providers	not	to	
run	entirely	on	their	own	cloud	is	worries	about	reliability	and	security.	Of	course,	
that’s	not	really	what’s	going	on.	There	is	a	very	basic	explanation.	In	IT,	as	the	old	
saying	goes,	if	it	ain’t	broke,	don’t	fix	it.	As	a	matter	of	fact,	trying	to	fix	things	comes	
with	enormous	risks.		

	
If	a	company	is	growing	at	around	20	percent	a	year,	what’s	it	annual	revenue?	The	
answer	may	depend	on	your	definition.	Is	it	based	on	ttm,	run	rate,	projections	for	
the	current	year,	etc?	But	let’s	say,	for	the	sake	of	argument,	that	Amazon	has	$100	
billion	in	annual	revenue.	That’s	about	$274	million	per	day.	So	if	a	move	of	the	
company’s	massive	ecommerce	infrastructure,	much	of	it	dating	back	to	the	1990s,	
to	AWS	were	to	result	in	a	single	day’s	worth	of	downtime,	the	result	would	be	a	
significant	revenue	loss.	Nobody	in	his	right	mind	would	attempt	such	a	migration	of	
computing	infrastructure	willy-nilly.	The	MAWS	(Move	to	AWS)	project	at	Amazon	
has	been	going	on	for	years	and	will	likely	go	on	for	years	to	come.	
	
Anyone	with	a	modicum	of	knowledge	about	enterprise	software	knows	of	the	
perils	of	changing	anything	in	a	computing	environment.	A	mere	switch	to	newer	
hardware	for	a	server	can	require	months	of	preparations	and	testing.	An	upgrade	
to	a	new	major	release	of	database	software	for	a	mission-critical	system	might	be	
planned	years	in	advance	and	involve	many	months	of	testing	before	the	upgraded	
system	is	ready	to	go	live	and	replace	the	old	one.	Many	years	ago,	I	had	an	
interesting	conversation	with	a	guy	responsible	for	the	Oracle	databases	at	UBS,	
which	had	a	huge	number	of	applications	running	on	top	of	Oracle.	He	complained	
that	by	the	time	they	had	tested	all	the	applications	against	a	new	release	of	Oracle	
to	verify	that	it	was	safe	to	upgrade,	that	new	release	was	already	so	old	that	it	was	
about	to	become	desupported	by	Oracle.	The	reluctance	to	modify	a	well-running	
system	is	not	the	exclusive	realm	of	paranoid	Swiss	bankers.	Oracle	makes	good	
money	from	offering	extended	support	for	software	releases	that	have	been	
desupported.	So	a	customer	will	pay	extra	for	support	for	a	release	that	is	usually	so	
mature	and	stable	that	it	doesn’t	take	much	work	to	support	it.	And	that’s	just	
because	the	customer	would	rather	shell	out	the	extra	support	money	than	go	
through	the	pains	of	an	upgrade.	
	
Which	brings	us	to	Hadoop.	If	cloud-service	providers	are	slow	to	move	their	own	
computing	infrastructure	to	the	slightly	different	environment	offered	by	their	own	
clouds,	what	are	the	chances	of	existing	production	IT	systems	being	moved	to	
Hadoop,	which	is	not	just	a	different	platform	but	also	a	completely	different	
computing	paradigm?	Not	great,	one	would	think.	That	would	essentially	tie	the	
growth	opportunities	of	Hadoop	mainly	to	new	“Big	Data”	scenarios	and	mainly	
those	that	can’t	be	handled	by	other	technologies.	How	big	those	opportunities	will	
turn	out	be	remains	to	be	seen.		At	the	same	time,	the	notion	of	what	Hadoop	is	may	
continue	to	evolve.	For	instance,	Grammarly	moved	from	using	“Amazon	EMR	with	
Hadoop	and	Pig”	to	using	Spark	on	EC2	with	S3	for	storage.	
http://tech.grammarly.com/blog/posts/Petabyte-Scale-Text-Processing-with-
Spark.html	
	
So	Spark	can	run	both	in	Hadoop	clusters	or	in	standalone	mode	and	with	a	variety	
of	input	formats.	If	we	see	a	tendency	of	Hadoop-compatible	processing	engines	
being	run	in	environments	that	are	not	traditional	Hadoop	clusters,	it’s	going	to	
bring	up	the	questions	whether	such	implementations	should	be	counted	towards	

the	success	story	of	Hadoop	and	whether	they	will	enrich	the	traditional	Hadoop	
distributers.	Amazon	probably	doesn’t	care	that	much	as	long	as	everything	is	run	
on	AWS.	

Conclusion	
The	future	success	of	Hadoop	will	depend	heavily	on	the	emergence	of	new	sources	
of	vast	quantities	of	data.	How	that	will	play	out	remains	to	be	seen.	Data	volumes	
will	likely	continue	to	grow	significantly	as	has	always	been	the	case	in	the	past.	
There	will	likely	be	sources	for	potential	data	growth	that	turn	out	to	have	been	
overhyped,	like	RFIDs	were	about	a	decade	ago.	(Now	we	have	the	overhyped	data	
lake	concept	that	has	extreme	security	issues.)	How	much	of	the	new	data	can	be	
filtered,	compressed,	or	aggregated	near	its	sources	lessening	the	need	for	large	
central	cluster	processing	is	something	that	will	be	a	factor.	As	will	be	the	retention	
needs	for	the	raw	new	data.	And	the	degree	to	which	conventional	means	can	
handle	mainstream	needs	for	computing	will	be	an	important	factor	in	the	size	of	
the	Hadoop	niche.	A	possible	outcome	is	that	Hadoop	becomes	a	little	like	Artificial	
Intelligence.	AI	started	out	as	a	grand	scheme	of	making	computers	intelligent	like	
humans,	a	goal	that	is	still	a	far-away	dream.	But	in	the	process,	practically	useful	
results	were	achieved	in	subareas	like	robotics,	natural	language	processing,	
machine	learning,	etc.	Perhaps	Hadoop	will	end	up	in	a	similar	fashion	by	failing	as	
an	ambitious	grand	scheme	but	in	the	process,	spawning	some	useful	components.	
	
	
	
	
.	

