
Making	Sense	Out	of	SQL	Server	on	Linux	
Hakan	Jakobsson	

hakan@hakan-jakobsson.com	
	

Version	2016-04-14	
	

Introduction	
Microsoft	recently	announced	that	it	will	port	its	SQL	Server	database	product	to	
Linux.	A	few	years	ago,	such	an	announcement	would	have	been	completely	
unthinkable,	and	even	now,	there	are	probably	quite	a	few	people	who	are	shaking	
their	heads	for	good	reasons.	There	are	good	arguments	for	why	it	will	be	difficult	
for	such	a	port	to	get	any	traction.		
	
The	announcement	of	the	Linux	port	“happened”	to	coincide	with	an	aggressive	SQL	
Server	marketing	campaign	targeting	Oracle	that	tries	to	entice	existing	Oracle	
customers	to	migrate,	not	to	the	long-in	the-future	Linux	port,	but	to	migrate	here	
and	now	with	promises	of	better	performance	and	free	software	licenses.		
	
Moreover,	the	Linux	announcement	is	a	strong	signal	that	Microsoft	has	abandoned	
its	longstanding	ambition	to	make	Windows	the	platform	for	everything	related	to	
computing.	Microsoft	CEO	Satya	Nadella	had	already,	in	many	ways,	signaled	an	
attitude	towards	Linux	that	is	very	different	from	that	of	his	predecessor	Steve	
Ballmer.	So	how	does	SQL	Server	on	Linux	fit	into	the	picture?	
	
Let’s	split	up	the	competitive	position	of	SQL	Server	into	three	issues:	
	

1. Its	current	marketing	campaign	to	attract	customers	from	Oracle.	
	

2. The	viability	of	SQL	Server	as	a	standalone	piece	of	software	on	Linux.	
	

3. The	role	of	Linux,	including	a	SQL	Server	port,	in	Microsoft’s	emerging	cloud	
landscape.	

	
As	for	the	first	item,	it’s	easy	to	dismiss	Microsoft’s	marketing	campaign	to	try	to	get	
Oracle	customers	to	migrate	to	SQL	Server.	Such	campaigns	have	been	common	
during	the	database	wars	over	the	last	three	decades	and	they	typically	have	had	
very	little	to	show	for	their	efforts.	It’s	hard	enough	just	to	upgrade	a	production	
instance	of	an	Oracle	database	to	a	new	version	of	Oracle	and	most	customers	
wouldn’t	even	contemplate	migrating	it	to	some	other	database	platform.	Databases	
are	extremely	sticky,	and	these	marketing	campaigns	to	target	a	competitor’s	
database	for	migration	have	turned	out	to	be	little	more	than	PR	stunts	that	have	



had	very	limited	material	success.	Microsoft’s	latest	entry	into	this	game	will	likely	
be	no	different.	
	
So	it’s	really	items	2	and	3	that	are	interesting	and	require	a	fair	amount	of	
discussion.	
	

The	problems	with	SQL	Server	as	a	Linux	product	
Before	getting	into	the	change	in	Microsoft’s	global	vision	of	the	future	roles	of	
Windows	and	Linux,	it	may	make	sense	to	consider	the	merits	of	a	Linux	port	for	
SQL	Server	as	an	isolated	proposition.	Would	it	make	sense	for	Microsoft?	Microsoft	
has	ported	some	of	its	software	to	non-Windows	platforms	for	a	long	time,	e.g.,	
Office	for	Mac,	so	it	wouldn’t	be	completely	without	precedent.	On	the	other	hand,	
Microsoft	spent	a	lot	of	effort	trying	to	kill	Linux,	but	with	that	effort	apparently	
over,	why	not	try	to	generate	some	additional	revenue	on	that	platform?	After	all,	a	
lot	of	the	world’s	enterprise	databases	run	Oracle	or	DB2	on	Linux,	so	there	would	
seem	to	be	a	market	opportunity	here.	
	
One	obvious	problem	with	a	Linux	port	would	be	the	lack	of	credibility	and	skill	
pool.	The	hardcore	Linux	crowd	typically	doesn’t	hold	Microsoft	in	all	that	high	
regard	and	the	Windows	crowd	that	knows	SQL	Server	is	rarely	deeply	skilled	in	
Linux,	so	where	are	all	the	people	that	are	going	to	be	needed	to	set	up	and	
administer	SQL	Server	databases	on	Linux?	
	
A	perhaps	even	bigger	challenge	is	the	value	of	SQL	Server	without	being	part	of	the	
Windows	ecosystem.	Whatever	you	may	think	about	the	quality	of	SQL	Server	
purely	from	the	standpoint	of	a	relational	database	server,	it’s	undeniable	that	a	
significant	component	of	its	value	proposition	in	a	Windows	environment	comes	
from	its	integration	with	other	components	in	the	same	ecosystem.		
	
The	Windows	ecosystem,	by	virtue	of	the	integration	of	components,	adds	value	that	
is	more	than	the	sum	of	its	parts,	whether	they	be	the	Windows	OS	itself,	.NET,	
Active	Directory,	SQL	Server,	Excel,	Analysis	Services,	the	many	other	Microsoft	
components	and	numerous	third-party	tools	and	applications	that	run	on	Windows.	
And	let’s	not	forget	all	the	professional	services	and	the	deep	pool	of	talent	that	is	
readily	available	within	the	world	of	Windows.	It’s	far	from	clear	that	extracting	
merely	the	“core	relational	database	capabilities”		
http://www.zdnet.com/article/microsoft-is-porting-sql-server-to-linux/	
of	SQL	Server	to	be	run	in	a	completely	different	environment	would	make	it	even	
remotely	as	useful	as	within	the	Windows	ecosystem.	
	
But	perhaps	even	more	interesting	are	the	technological	challenges	that	come	with	
the	port	itself.	
	
Oracle	has	long	been	good	at	porting	its	database	software	to	different	platforms	
because	since	the	very	early	days,	the	ability	to	run	Oracle	on	any	hardware	or	OS	



has	been	used	as	a	major	selling	point.	The	same	has	not	been	true	of	SQL	Server	
and	that	will	likely	impose	some	challenges	when	it	come	to	creating	a	viable	Linux	
port.	
	
The	obvious	approach	to	creating	portable	software	is	to	distinguish	generic	code	
from	code	that	has	to	be	specific	to	the	underlying	OS	or	hardware.	In	the	case	of	a	
relational	database	system,	the	generic	code	will	likely	include	functionality	like	
parsing	SQL	statements	and	evaluating	a	search	space	of	potential	join	orders	for	
the	purpose	of	query	optimization.	But	closer	to	the	hardware,	the	way	in	which	the	
database	reads	and	writes	data	to	disk	or	manages	processes	and	threads	will	be	
more	likely	to	include	OS	specific	components.	So	a	natural	way	to	address	a	
portable	architecture	is	to	separate	the	generic	code	from	the	OS	dependent	code	by	
an	API	abstraction	where	there	is	a	set	of	well-defined	functionality	that	the	generic	
code	relies	on	but	that	is	implemented	separately	on	different	platforms	by	porting	
organizations	that	have	the	required	platform	expertise.		
	
Maintaining	the	right	demarcation	line	between	generic	and	OS	specific	code	and	
the	right	API	requires	a	certain	amount	of	discipline.	Oracle	probably	does	as	good	a	
job	of	it	as	anyone	could	do	and,	historically,	portability	has	been	part	of	the	reason	
for	its	success	in	the	marketplace.		However,	even	for	the	Oracle	database,	it’s	
unlikely	that	all	ports	are	going	to	work	equally	well.	
	
One	of	the	basic	issues	is	that	any	piece	of	software	is	likely	to	run	better	on	the	
platform	on	which	it	was	developed	than	on	any	later	port.	The	original	developers	
presumably	were	very	familiar	with	the	platform	and	all	potential	platform-related	
issues	and	would	make	sure	that	the	code	would	run	really	well	on	it.	As	the	
developers	test	their	own	code	as	they	develop	it,	they	would	be	much	more	likely	
to	catch	any	issue,	whether	a	pure	bug	or	a	performance	issue,	at	an	early	stage.	The	
developers	who	port	the	code	to	another	platform,	may	well	be	different	people	who	
may	have	platform	specific	skills	but	didn’t	write	the	original	code	for	the	base	
platform.	So	they	are	supposed	to	take	code	they	didn’t	write	themselves	and	make	
it	run	well	on	a	platform	it	wasn’t	developed	on	–	not	a	trivial	task.	
	
But	even	in	the	best-case	scenarios	with	extremely	competent	people	taking	care	of	
the	OS	specific	functionality,	it’s	very	likely	that	there	will	be	differences	between	
ports	just	because	different	platforms	behave	somewhat	differently	and	that	could	
have	an	impact	on	performance,	if	nothing	else.	
	
But	let’s	not	leave	out	functionality	when	it	comes	to	the	challenge	of	porting	
software.	The	documentation	for	the	z/OS	port	of	Oracle	to	IBM	mainframes	makes	
it	clear	that	users	should	be	aware	of	fundamental	functionality	issues	that	are	
specific	to	this	Oracle	port,	like	ASCII	vs.	EBCDIC	encoding	for	character	columns.	
	
Yet	another	stumbling	block	for	a	good	port	of	SQL	Server	to	Linux	may	be	a	historic	
lack	of	discipline	in	terms	of	keeping	Windows-specific	code	from	making	its	way	
into	what	should	be	generic	code	for	a	portable	database	server.	During	the	



Gates/Ballmer-era,	the	philosophy	was	that	Windows	would	be	the	one	and	only	
platform	for	everything.	It	would	seem	unlikely	that	there	was	a	strict	discipline	in	
terms	of	maintaining	an	abstraction	of	generic	vs.	port-specific	code.	If	you	assume	
that	SQL	Server	will	never	run	on	anything	besides	Windows,	there	would	be	no	
reason	not	to	cram	in	as	many	Windows-specific	optimizations	and	as	much	
Windows	specific	functionality	as	possible	anywhere	in	the	code.	
	
So	it	seems	likely	that	the	SQL	Server	code,	for	the	last	two	decades	or	so,	has	been	
developed	without	a	whole	lot	of	portability	discipline	and	that	the	lack	of	such	
discipline	will	make	the	porting	work	harder.	It	will	be	interesting	to	see	how	much	
these	issues	impact	the	port	and	what	functionality	actually	gets	ported.		
	

The	role	of	Linux	in	Microsoft’s	future	
Here	we	have	what	may	be	a	significant	part	of	the	explanation	for	the	Linux	port	
announcement	–	Microsoft’s	general	push	to	embrace	Linux	in	conjunction	with	its	
push	to	the	cloud.	There	are	two	parts	to	this	story,	Microsoft’s	sense	of	the	
importance	of	the	cloud	and	its	sense	that	it	needs	Linux	to	compete.	
	

1. Microsoft	has	realized	that	cloud	platforms	will	be	the	new	centers	of	gravity	
going	forward.	Much	like	Windows	was	an	important	ecosystem	for	
computation	in	the	past	decades,	the	public	cloud	platform	may	play	a	similar	
roll	in	the	future,	complete	with	a	vast	selection	of	services,	applications,	and	
tools,	skill	pools	and	readily	available	professional	services,	and	lots	of	third-
party	participation.	As	the	cloud	slowly	renders	the	old	world	order	obsolete,	
including	the	Windows	franchise	in	its	current	form,	Microsoft	wants	Azure	
to	be	a	major	player	in	the	new	world	order.	
	

2. Microsoft	has	realized	that	being	Windows-only	would	relegate	it	to	
becoming	a	niche	player	in	the	cloud,	albeit	probably	a	very	significant	one.	
Microsoft	failed	in	its	efforts	to	stop	Linux	from	becoming	a	major	player	in	
enterprise	computing	and	would	find	itself	at	a	major	competitive	
disadvantage	to	AWS	if	it	became	regarded	solely	as	a	platform	for	diehard	
Microsoft	shops.	AWS,	of	course,	has	no	intrinsic	problems	supporting	any	
kind	of	OS	a	customer	wants	to	run	on.	So	rather	than	clinging	to	its	dream	of	
Windows	as	the	dominant	enterprise	computing	platform,	Microsoft	is	going	
all	in	on	Azure	as	a	major	player	in	the	cloud,	and	that	would	be	hard	to	do	
without	a	Linux	component.	Obviously,	there	is	not	a	whole	lot	of	money	to	
be	made	by	Microsoft	by	supporting	Linux	when	viewed	in	isolation	from	its	
overall	platform	strategy	–	how	lucrative	would	it	be	for	Microsoft	to	support	
a	bunch	of	pony-tailed,	open-source	enthusiasts	running	free	software	on	
Azure	compared	to	traditional	Microsoft	shops	running	on	the	proprietary	
Windows	stack?	So	Microsoft’s	Linux	strategy	is	clearly	based	on	long-term	
strategic	concerns	rather	than	short-term	fat	margins.	Whether	Microsoft’s	
Linux	effort	can	gain	any	significant	credibility	remains	to	be	seen.	

	



	

Conclusion	
Microsoft’s	overall	cloud-related	Linux	push	probably	plays	a	role	in	its	SQL	Server	
strategy.	How	successful	that	Linux	strategy	will	be,	whether	in	the	cloud	or	for	SQL	
Server,	remains	a	big	question	mark.	It	faces	significant	credibility	and	mindshare	
problems	in	both	areas	as	well	as	numerous	technical	challenges	for	the	SQL	Server	
port.	On	the	other	hand,	if	you	believe	that	the	old	Windows	franchise	is	going	to	be	
marginalized	by	the	cloud	(and	mobile)	anyway,	what	has	Microsoft	got	to	lose	by	
trying	to	play	the	Linux	card?	Probably	not	much.	And	even	if	the	Linux	strategy	
doesn’t	become	a	huge	success,	Microsoft’s	Windows	niche	in	the	cloud	will	likely	
still	be	a	pretty	nice	consolation	prize.	
	
	


